John Crigler

Durable Anchors

- Swiss Practice
- Grouting

Temporary

- Duration of use in principle < 2 years</p>
 - Standard: load cannot be adjusted (unless with special measures)
- Extractable: strands of the free length can be extracted

Permanent

 Anchors with a life expectancy of > 2 years as well as temporary anchors installed in a corrosive environment or subject to a critical level of stray currents

• Standard: Load usually cannot be changed after load transfer

• Controllable: Load can be checked periodically

• Adjustable: Load can be adjusted or released

Surveillance Anchors: Load can be permanently checked with a load cell

- Vital unseen anchor components cannot be inspected or replaced
- Trend towards more stringent corrosion protection requirements
- Examples of anchor failure due to tendon corrosion

Electrically Isolated Anchors

Anchor is fully encapsulated against stray currents, chlorides, other aggressive elements

 Integrity of anchor encapsulation can be monitored at any stage in the anchor 's life

- First project Stadelhofen railway station in Zürich (1986)
- 945 permanent anchors specified with working life >
 100 years
- Since 1995: Electrically isolated anchors have been the standard in Switzerland for all permanent anchors

Bearing plate with inner anchor tube

PE Sleeve

Isolating plate

Load distribution Plate

Anchor head

Wedges-

Protection cap

Rubber seal

Cap fixing clips

Temporary Anchorage – E

Adjustable - ER Outer Grout **Anchor** Vent Tube **Protection Inner Anchor** Cap Tube **Anchor Smooth** Head **PE Duct** Ring Compression Nut Seal **PE Sleeve Isolation Plate** Load distribution Grout **Plate** Inlet Bearing **Plate**

Destressable/Adjustable - EA

Surveillance - ER-D

Surveillance/Detensionable - EA-D

Load Control

- Jumping Load Cell
- APP (Anchor Load control Jack)
- Hydraulic Stressing Jack (with stressing chair)
- Electrical Load Cell

Jumping Load Cell / EG Anchorage

Jumping Load Cell / EG Anchorage

Anchor Load Control Jack

Hydraulic Center Hole Jack

Anchor Head Gripper device

Load control with Stressing Jack

Load control with Stressing Jack and electrical Load Cell

Load control with electrical Load Cells on temporary anchors

Permanent Monitoring

Field Inspection

- State of Anchorage
- Grease renewal
- Seal replacement

ERM – Unstressed Anchor

ERM – Stressed Anchor

ERM On Site

Grouting

Grouting Objectives

- Enhance Durability
 - Fill the Tendon
 - Passivate the Steel
- Develop Bond
 - Adequate Strength

Grouting

- Mix Design
- Procedures
- Equipment
- Personnel
- Quality Control

Bleed in Grout

- Bleed water is trapped in duct-causes voids
- Higher verticalrises = higherpressures andmore bleed water
- Strand promotes bleed by wicking

Intermediate lens

Bleed

Bleed Lenses

- ♦ Voids
- Loss of protective environment

Bleed Water

Bleed water from Admixture in plain grout

bleed water

PTI Bleed Tests

- Wick Induced Bleed Test
 - ASTM C940
 - Limit to 0.0% at 3 hours
- Schupack Pressure
 Bleed Test
 - Required for Class B and D grouts

Inclined Tube Test

Trial Mixes

- Cement Selection
- Compatibility with Admixtures
- Minimize Bleed
- ♦W/C Ratio
- Stability

Homogenous Grout

Equipment - Grout Plants

- Homogenous
 Grout
- High SpeedMixer >1500rpm
- WaterMeasuringSystem

Grout Mix + Mixer = High Quality Grout

- Trial Batches
 - Production Batch Size
 - Temperature Range
 - Identical Ingredients
 - Batching Sequence

Trial Batches

- Workability
 - Flow
 - Stability
- Measure Performance
 - Bleed
 - Density
 - Strength
- Mixing Time
 - Manufacturer's Recommendations
 - ≅ 4-5 Minutes
 - Mixer Optimization Process

Personnel

Experience

Training

Commitment

Thank You

